UNIVERSITY OF WISCONSIN

Bachelor of Science in Applied Computing APC 360 Section 01: Database Management 1 (Semester/Year)

PROFESSOR: Weimin He

PHONE: (715) 346-4916

E-MAIL: whe@uwsp.edu

COURSE DESCRIPTION: This course covers design and implementation of relational database management systems to support computer-based information systems. Topics include: data modeling techniques such as entity-relationship modeling, extended entity-relationship modeling, database normalization techniques, and basic and advanced features of database query language SQL.

MODE OF DELIVERY: Online

COURSE OBJECTIVES: At the end of this course, students will be able to:

- Develop knowledge of basic and important concepts in modern database design such as entity-relationship model, extended entity-relationship model, and database normalization techniques
- Leverage fundamental features of Structured Query Language (SQL) for creating and querying databases, such as CREATE, INSERT, DELETE, DROP, and simple SELECT queries
- Leverage advanced features of Structured Query Language (SQL) for querying databases, such as ORDER BY, GROUP BY, Relational Set Operators, nested SQL queries, and OUTER JOIN SQL queries

TEXTBOOK:

Carlos Coronel and Steven Morris. *Database Systems: Design, Implementation, and Management*. 12th Edition. ISBN-10: 1-305-62748-2 | ISBN-13: 978-1-305-62748-2

COURSE OUTLINE:

- I) Database Systems
 - a. Motivation of using Databases
 - b. Types of Databases
 - c. Evolution of File Systems
 - d. Problems of File Systems
- II) Data Models
 - a. Data Modelling and Data Models

- b. Data Model Basic Building Blocks
- c. Business Rules
- d. Evolution of Data Models
- e. Degrees of Data Abstraction

III) Relational Database Model

- a. A Logical View of Data
- b. Keys
- c. Integrity Rules
- d. Relationships Within Relational Databases
- e. Relational Algebra Operators

IV) Entity Relationship (ER) Modeling

- a. Entities (Weak and Strong Entities)
- b. Attributes (Required and Optional Attributes, Single-Valued and Multivalued Attributes, and Derived Attributes)
- c. Relationships (Weak and Strong Relationships, Connectivity and Cardinality, Existence Dependence, Relationship Degree, and Recursive Relationships)
- d. Developing an ER Diagram

V) Introduction to Structured Query Language (SQL)

- a. Introduction to SQL
- b. Data Definition Commands
- c. Data Manipulation Commands
- d. SELECT queries using FROM, WHERE, ORDER BY, GROUP BY clauses and Aggregate Functions such as COUNT, MAX, MIN, and SUM.

VI) Advanced SQL

- a. Relational Set Operators (UNION, UNIONALL INTERSECT, EXCEPT)
- b. Nested SQL Queries (Non-Correlated Subqueries and Correlated Subqueries)
- c. NULL Values Processing in Database Tables
- d. Outer Join SQL Queries

VII) Extended Entity Relationship (EER) Data Modeling

- a. Motivation of EER Modeling
- b. Entity Supertypes and Subtypes
- c. Subtype Discriminator
- d. Disjoint and Overlapping Constraints
- e. Completeness Constraint
- f. Design Cases: Learning Flexible Database Design

VIII) Normalization of Database Tables

- a. Motivation of Database Normalization
- b. Normalization Process (1NF, 2NF, 3NF, and BCNF)

GENERAL TEACHING PROCEDURE/METHODOLOGY:

Audio Lectures, Practice Activities, Assignments, and Labs

EVALUATION PROCEDURES TO BE USED:

Practice Activities, Assignments, Labs, Quizzes, Midterm Exam, and Final Exam

COURSE GRADING: Grades will be assessed using a variety of methods:

Assignment	Points
Practice Activity Comments: 8 @ 0.5 point	4
Labs: 9 @ 4 points	36
Assignments: 2 @ 4 points	8
Midterm Exam	20
Final Exam	32
Total Points	100

FINAL EXAM: YES

GRADE SCALE:

Final grades will be assigned according to the following scale:

A: $score \ge 90$,

B: $80 \le score \le 90$,

C: 70 <= score < 80

D: $60 \le score \le 70$,

F: score < 60

Depending on the overall performance of the class, the instructor may use lower cutoff points for some of the letter grades.

WORKLOAD:

Students should expect to spend 40 hours reading the required readings, 60 hours going through the online course material (audio lectures and self-check quizzes) and 50 hours completing the lab assignments and practice activities for a total of 150 hours.